

PROSTAGLANDINS: IDENTIFICATION AND CONTENT IN HIGHER PLANTS

E. D. LEVIN, V. E. CHEREPANOVA, I. A. ZIMOVTSVA and T. O. SEDLOVA

Siberian Technological Institute, Prospect Mira 82, Krasnoyarsk 660607, U.S.S.R.

(Received in revised form 24 February 1988)

Key Word Index—*Populus balzamifera*; Salicaceae *Larix sibirica*; Pinaceae prostaglandins; identification; content; annual cycle.

Abstract—It has been established for the first time that prostaglandins of groups F, E, A and B are present in fresh tissue of higher plants (*Populus balzamifera* and *Larix sibirica*). The prostaglandins were isolated in pure form and the changes in the tissue levels determined over the course of one year.

INTRODUCTION

For a long time it was considered that prostaglandins (PG) were absent from plants. The first indication that they were constituents of plants was provided by the reports of the presence in plants of compounds similar to prostaglandins or having similar structural features to prostaglandins [1-4]. This was followed by reports of the identification of prostaglandins in onion (*Allium cepa*) and *Kalanchoe blossfeldiana* var Pollen [5, 6]. However, in none of these studies were prostaglandins isolated in pure form. Prior to most of these reports on the presence of prostaglandins in higher plants, R. P. Gregson and his colleagues had isolated prostaglandins E₂ and F_{2a} from the red algae *Gracilaria lichenenoioles* and had identified the latter by physico-chemical methods [7].

The presence of prostaglandins in higher plants was established for the first time by Levin and Alautdinov [8, 9], who with their colleagues then went on to isolate prostaglandins of groups E, F, A and B in pure form from the cambial zone and buds of *Larix sibirica* and *Populus balzamifera* [10-12].

RESULTS AND DISCUSSION

The buds and cambial zone of *P. balzamifera* and *L. sibirica* were sampled in the last week of every month for two years. Four trees, always from the same area, were taken for analysis since a previous study [13] had shown

that for a statistically meaningful result two trees are needed for determination of prostaglandins F, E, A and four for PGB. On bioassay of extracts from cambial zone, buds, bark, heartwood and sapwood of young and mature samples, by an *in vitro* procedure using rat uterine horn only the extracts of cambial zone and buds showed prostaglandin activity.

TLC of the prostaglandins isolated was performed by a procedure similar to that used for the isolation of these substance from animals tissues [14]. The R_f values of the spots obtained coincided with or were very close to those of prostaglandins present in human semen (Table 1).

The UV spectrum of prostaglandin E was recorded before and after alkali treating. A characteristic bathochromic shift of the maximum absorption was obtained ($\lambda_{\text{max}}^{\text{EtOH}}$ 278 nm). Prostaglandins of group B and A had maximum absorption in ethanol at 278 and 217 nm respectively.

The IR spectra of the prostaglandins isolated from the cambial zone and buds contained a number of characteristic bands. PGE₁: $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1728 (>C=O), 964 (trans double bond); PGF_{1a}: 1697 (>C=O), 967 (trans double bond); PGB₁: 1726 (>C=O), 1635 (C=C), 970 (trans double bond); PGA₁: 1720 (>C=O), 1586 (C=C), 962 (trans double bond).

GC of prostaglandins was carried out on two phases. Authentic samples of prostaglandins F_{1a}, F_{2a}, E₁ and E₂ were used for identification by the mark method. Prosta-

Table 1. R_f values of prostaglandins

Type	<i>P. balzamifera</i>				<i>L. sibirica</i>				Standards	
	Cambial zone		Buds		Cambial zone		Buds			
	I	II	I	II	I	II	I	II	I	II
PGF _{2a}	0.18	0.33	0.19	0.31	0.18	0.33	0.18	0.32	0.18	0.31
PGE ₂	0.24	0.47	0.23	0.46	0.26	0.46	0.23	0.48	0.23	0.48
PGD ₂	0.27	0.61	—	—	0.29	0.62	—	—	0.27	0.63
PGB ₂	0.59	0.75	0.59	0.76	0.59	0.76	0.59	0.76	0.60	0.76
PGA ₂	0.70	0.78	0.72	0.78	0.72	0.78	0.70	0.80	0.70	0.78

glandins of type F, E, A, B were identified. They were quantitated by the internal standard method and normalization of peak areas.

The GC-MS (probe, 70 eV) of the methyl ether of the trimethylsilyl derivative of PGF_{1 α} showed that the isolated substance was really prostaglandin F_{1 α} .

Prostaglandin E₁ and E₂ were identified by GC-MS of their tris-trimethylsilyl and tetrakis-trimethylsilyl derivatives. The fragmentation pattern and the relative intensity of the various ions were similar to those of PGE₁ and PGE₂ isolated from animal sources [15].

GC-SIMS of derivatized prostaglandin concentrates provided further evidence for the presence of prostaglandins E₁ (*m/z* 552, E₁-TMS), E₂ (550, E₂-TMS), F_{1 α} (554, F_{1 α} -TMS), F_{2 α} (552, F_{2 α} -TMS) in the concentrate, as did HPLC of the bromophenacyl derivatives of the prostaglandins (Table 2).

The melting points of the prostaglandins F_{1 α} (102°), E₁ (115°) and E₂ (70°) were the same as those of authentic prostaglandins isolated from animal sources. On recrystallization the melting points were unchanged. Finally, the 200 MHz ¹H NMR spectrum of PGF_{2 α} was recorded and found to be identical to that of authentic PGF_{2 α} [18].

The above results prove that fresh tissues of higher plants contain prostaglandins F_{1 α} , F_{2 α} , E₁ and E₂. Identification of prostaglandins A and B is unnecessary, since it is known that on dehydrogenation prostaglandins E are converted into PGA and PGB. It was shown earlier by us, that by changing the pH of the medium, 74% of prostaglandin E is converted into prostaglandin A [12].

In addition to identifying the prostaglandins, it was important to determine how the tissue levels of these compounds change in the course of the annual cycle. This was followed by GC (Table 3) over a period of two years. Prostaglandins were absent from leaves and needles at all stages of their development.

As seen from Table 3, the prostaglandin content of buds is not stable and depends on the phenological condition of the tree. The changes have no obvious connection with the surrounding air temperature and depend on, apparently, ongoing biochemical processes in living tissue, which are connected with the different phases of the annual cycle.

It is impossible yet to give any exhaustive explanations for these changes. It may be supposed, however, that prostaglandins are bioregulators of reproductive processes, and of those biochemical processes which occur in winter and allow the living tissue to survive for a long period at low temperatures. Combining Chailakxyan's theory [16], Groenewald's experiments [17] and the results of this study we are led to propose that prostaglandins are the unknown blossoming stimulator, which was called 'florigen' by Chailakxyan. Recently, Groenewald, treated plants with prostaglandins (of animal origin) and achieved active blossoming without growth intensification. However, our studies provide the first direct evidence that prostaglandins are present in higher plants and that they show the seasonal changes expected of 'florigen'.

EXPERIMENTAL

Bioassay. Plant tissue was extracted immediately with EtOH (10 × 24 hr at -15/-17°). The assay was conducted on isolated rat's uterine horn. Miograms were recorded by means of a plethysmograph PG-2. Just before introducing the preparation the Et₂O was evapd from the sample, and 1.5 ml of physiological soln (Ringer-Lock soln) poured immediately on to the dry residue. 0.1 ml and then 1 ml of soln were introduced into the apparatus.

Analytic methods. UV: EtOH then EtOH-2M NaOH; IR: Me ethers prepared by treating sample with CH₂N₂. Double

Table 2. Identification of prostaglandins by HPLC

R _t of prostaglandin derivatives (min)					
<i>P. balzamifera</i> buds	<i>P. balzamifera</i> cambial zone	<i>L. sibirica</i> buds	D ₂	Standards	
				E ₂	F _{2α}
		14.0		14.3	
16.8	16.2	16.2		16.6	
18.6	17.9	17.9			18.2
25.01	24.9	24.9			25.0

Table 3. Prostaglandin content of *P. balzamifera* and *L. sibirica* buds

Month	Temperature of surrounding air (°)	Prostaglandin content (μg/g dry wt tissue)	
		<i>P. balzamifera</i>	<i>L. sibirica</i>
Oct	0	20.3	
Nov	-9	20.5	9.1
Dec	-36	17.9	8.8
Jan	-20	9.4	1.5
Feb	-20	5.5	2.0
Mar	-10	9.5	5.3
Apr	+10	70.0	17.9

beam instrument used with solvent blank in reference beam. TLC: Silufol UV-254 with $\text{CHCl}_3\text{-MeOH-HOAc-H}_2\text{O}$ (450:40:5:4) (system I); silica gel L (5–40 μ)-gypsum (20:1) with $\text{C}_6\text{H}_6\text{-dioxane-HOAc}$ (20:20:1) (system II). Detection with 10% soln of phosphomolybdic acid and 2% alcohol soln of vanillin; GC: 2 m \times 2.5 mm glass silanized column, packed with either cramatlon N-Super with 3% OV-225 or chromaton N-AW-DMCS with 1% SE-30. 3% OV-225; resonance-ionization detector, 220°, N_2 37 ml/min. 1% SE-30: FID detector, 180 to 280° at 5°/min, He 35 ml/min; GC-MS (LKB-9000 and LKB-2109): Me-TMS-PGF_{1 α} , 70 eV, accelerating voltage 3.6 kV, m/z (rel. int.); 586 [M]⁺ (1.8), 571 [M-Me]⁺ (8), 515 [M-71-(C₁₆-C₂₀)]⁺ (60), 496 [M-(Me₃SiOH)]⁺ (60), 425 [M-71-(Me₃SiOH)]⁺ (100), 406 [M-2(Me₃SiOH)]⁺ (10), 335 [M-71-2(Me₃SiOH)]⁺ (14), 316 [M-3(Me₃SiOH)]⁺ (76); Me-TMSi-PGE₁ and Me-TMSi-PGE₂, 2.5 m \times 0.3 mm quartz capillary column, packed with SE-30, He P=10.8 \times 10⁴ Pa, 200 to 300° at 10°/min, ionizing voltage 22.5 eV. The sample was concd by evapn on the needle and introduced into the column. The samples were methylated with fresh CH_2N_2 soln and then silylated with a mixture of *N,O*-bis-(trimethylsilyl)-trifluorideacetamide-piperidin (1:1). Me-(Me₃Si)₃-PGE₁; GC-MS (probe) 22.5 eV, m/z (rel. int.) 659 [M-Me]⁺ (6), 584 [M]⁺ (5), 513 [M-(C₁₆-C₂₀)]⁺ (4), 494 [M-(Me₃SiOH)]⁺ (51), 423 [M-(C₁₆-C₂₀)-(Me₃SiOH)]⁺ (30), 411 [M-(C₁₅-C₂₀)]⁺ (100), 404 [M-2(Me₃SiOH)]⁺ (6), 385 [M-(C₁₃-C₂₀)]⁺ (6), 351 [M-(C₁-C₇)-(Me₃SiOH)]⁺ (10), 321 [M-(C₁₅-C₂₀)-(Me₃SiOH)]⁺ (8), 261 [M-(C₁-C₇)-2(Me₃SiOH)]⁺ (4), 199 [C₁₃-C₂₀]⁺ (15), 173 [C₁₅-C₂₀]⁺ (27). (Me₃Si)₄-PGE₁; GC/MS (probe) 22.5 eV, m/z (rel. int.): 642 [M]⁺ (2), 627 [M-Me]⁺ (11), 571 [M-(C₁₆-C₂₀)]⁺ (3), 552 [M-(Me₃SiOH)]⁺ (100), 481 [M-(C₁₆-C₂₀)-(Me₃SiOH)]⁺ (50), 469 [M-(C₁₅-C₂₀)]⁺ (79), 462 [M-2(Me₃SiOH)]⁺ (75), 443 [M-(C₁₃-C₂₀)]⁺ (6), 441 [M-(C₁-C₇)]⁺ (3), 379 [M-(C₁₅-C₂₀)-(Me₃SiOH)]⁺ (42), 353 [M-(C₁₃-C₂₀)-(Me₃SiOH)]⁺ (1), 351 [M-(C₁-C₇)-(Me₃SiOH)]⁺ (17), 289 [M-(C₁-C₅)-2(Me₃SiOH)]⁺ (2), 261 [M-(C₁-C₇)-2(Me₃SiOH)]⁺ (6), 199 [C₁₃-C₂₀]⁺ (18), 173 [C₁₅-C₂₀]⁺ (56).

Me-(Me₃Si)₃-PGE₂; GC-MS (probe) 22.5 eV m/z (rel. int.): 582 [M]⁺ (30), 567 [M-Me]⁺ (8), 511 [M-(C₁₆-C₂₀)]⁺ (4), 492 [M-(Me₃SiOH)]⁺ (59), 421 [M-(C₁₆-C₂₀)-(Me₃SiOH)]⁺ (30), 409 [M-(C₁₅-C₂₀)]⁺ (87), 402 [M-2(Me₃SiOH)]⁺ (20), 383 [M-(C₁₃-C₂₀)]⁺ (16), 319 [M-(C₁₅-C₂₀)-(Me₃SiOH)]⁺ (20), 293 [M-(C₁₃-C₂₀)-(Me₃SiOH)]⁺ (10), 287 [M-(C₁-C₅)-2(Me₃SiOH)]⁺ (6), 261 [M-(C₁-C₇)-2(Me₃SiOH)]⁺ (10), 199 [C₁₃-C₂₀]⁺ (11), 173 [C₁₅-C₂₀]⁺ (100).

(Me₃Si)₄-PGE₂; GC-MS (probe) 22.5 eV, m/z , (rel. int.): 640 [M]⁺ (10), 625 [M-Me]⁺ (17), 569 [M-(C₁₆-C₂₀)]⁺ (5), 550 [M-(Me₃SiOH)]⁺ (70), 479 [M-(C₁₆-C₂₀)-(Me₃SiOH)]⁺ (40), 467 [M-(C₁₅-C₂₀)]⁺ (39), 460 [M-2(Me₃SiOH)]⁺ (100), 441 [M-(C₁₃-C₂₀)]⁺ (16), 441 [M-(C₁-C₇)]⁺ (10), 377 [M-(C₁₅-C₂₀)-(Me₃SiOH)]⁺ (49), 351 [M-(C₁₃-C₂₀)-(Me₃SiOH)]⁺ (43), 351 [M-(C₁-C₇)-(Me₃SiOH)]⁺ (13), 287 [M-(C₁-C₅)-2(Me₃SiOH)]⁺ (22), 261 [M-(C₁-C₇)-2(Me₃SiOH)]⁺ (16), 199 [C₁₃-C₂₀]⁺ (24), 173 [C₁₅-C₂₀]⁺ (50).

HPLC. Sample treated with bromphenacylbromide (5 mg/ml) in the presence of Et₃N (2.8 mg/ml) in dry MeCN at room temp.

for 30 min. An aliquot of the reaction mixture was then analysed on a column of Ultrasphere ODS 5 μ (25 cm \times 4 mm) (Altex, U.S.A.) with MeOH-H₂O (4:1) at 1 ml/min and detection at 260 nm. ¹H NMR (200 MHz, TMS as int. standard): PGF_{2 α} : δ 0.86 (3H, m, H-20), 1.26–1.66 (12H, m, H-3, H-4, H-7, H-17, H-18 and H-19), 2.12–2.30 (8H, m, H-2, H-8, H-10, H-12, and H-16), 3.90 (1H, m, H-10a), 4.05–4.13 (2H, m, H-15 and H-10b), 5.38–5.49 (4H, m, H-5, H-6, H-13 and H-14), 4.40 (3H, br s, OH). Mps: uncorr.

Acknowledgements—The authors thank the Chief of the Laboratory of Prostaglandins and Steroids, Experimental Endocrinology and Hormone Chemistry Institute, the Academy of Medical Sciences of the U.S.S.R., K. K. Pivnitsky (cand. Chem. Sc.), senior researchers of the Bio-organic Chemistry Institute, Academy of Sciences of the U.S.S.R., B. L. Sadovskay (cand. Chem. Sc.) and B. A. Pozijnov for methods and recording of GC-MS, the Chief of Laboratory by Belozersky of Moscow State University by M. V. Lomonosov, and Professor C. D. Varfalameev for methods and access to HPLC facilities.

REFERENCES

1. Attrep, K. A., Mariani, J. M. and Attrep, M. (1973) *Lipids* **8**, 484.
2. Cao, C. M. M. and Cepero, E. M. (1975) *Int. Conf. on Prostaglandins*, Florence, 77.
3. Bohlmann, F., Borthakur, N., King, R. M. and Robinson, H. (1982) *Phytochemistry* **21**, 125.
4. Bohlmann, F., Singh, P., Jakupovic, J., King, R. M. and Robinson, H. (1982) *Phytochemistry* **21**, 371.
5. Attrep, K. A., Bellman, W. P., Attrep, M., Lee, J. B. and Braselton, W. E. (1980) *Lipids* **15**, 292.
6. Janistin, B. (1982) *Planta* **154**, 485.
7. Gregson, R. P., Marwood, J. F. and Quinn, R. J. (1979) *Tetrahedron Letters*, 4505.
8. Levin, E. D. and Alautdinov, Sh. T. (1977) *Wood Chem.* **5**, 101.
9. Alautdinov, Sh. T. and Levin, E. D. (1979) *Wood Chem.* **3**, 110.
10. Levin, E. D., Alautdinov, Sh. T. and Cherepanova, V. E. (1983) *Wood Chem.* **5**, 94.
11. Levin, E. D., Alautdinov, Sh. T. and Cherepanova, V. E. (1984) *Nat. Compds. Chem.* **5**, 567.
12. Sedlova, T. O., Zimovtseva, I. A. and Levin, E. D. (1985) *Wood Chem.* **4**, 110.
13. Cherepanova, V. E. and Levin, E. D. (1986) *Forest J., News of Higher Educational Establishments* **3**, 110.
14. Samuelson, B. (1963) *J. Biol. Chem.* **238**, 3229.
15. Middleditch, B. S. and Desidero, D. M. (1974) *Adv. Mass. Spektrom.* **6**, 173.
16. Chailakxyan, M. Ch. (1944) *Report Acad. Sci. U.S.S.R.*, **75**, 17.
17. Groenewald, E. G. and Visser, J. H. (1978) *Pflanzenphysiol* **88**, 423.
18. Ramwell, R. W., Shaw, J. E., Clarke, G. B., Grastic, M. F., Kaiser, D. G. and Pike, J. E. (1968) *Progr. Chem. Fats Other Lipids* **9**, 231.